Micro coaxial cables (often called “micro coax”) are essential components for transmitting high-speed digital signals, RF signals, and low-level analog signals in modern electronics where space is constrained and signal integrity is paramount. Integrating them seamlessly onto a Printed Circuit Board (PCB) requires careful planning and execution. This comprehensive guide explores the critical steps and best practices for successful micro coaxial cable integration, ensuring robust performance and enhanced reliability in your designs.
Why Use Micro Coaxial Cables on PCBs?
Before diving into how, understanding the why is crucial:
Unrivaled Signal Integrity (SI): Micro coax provides superior electromagnetic interference (EMI) shielding compared to PCB traces, especially critical for:
High-speed serial interfaces (USB 3+/4, PCIe Gen 3/4/5, HDMI 2.1+, DisplayPort, Thunderbolt)
Sensitive analog signals (medical sensors, instrumentation).
Minimal Crosstalk: The outer shield effectively isolates the inner conductor from neighboring signals.
Impedance Control: Coax cables maintain a consistent characteristic impedance (e.g., 50Ω, 75Ω) along their length, critical for minimizing reflections.
Reduced Radiation: Significantly lower EMI emissions compared to exposed differential pairs or single-ended traces at high frequencies.
Flexibility: Micro coax allows routing between stacked boards, around components, or to external connectors/devices where rigid PCB routing is impossible or impractical.
Key Considerations for Integrating Micro Coax onto PCBs
Selecting the Right Micro Coaxial Cable:
Impedance: Match the cable’s impedance (50Ω or 75Ω are standard) to your source, destination, and PCB traces.
Size: Diameters range from ~0.4mm to ~2.0mm (e.g., RG-178, RG-316). Choose based on space constraints and required bend radius.
Frequency Range: Ensure the cable’s specified bandwidth exceeds your signal frequencies.
Shield Effectiveness: Look for cables with high braid or foil + braid coverage (e.g., >95%) for best EMI performance.
Flex Life: Critical for dynamic applications like robotics or foldable devices. Ensure sufficient durability.
Termination Compatibility: Verify available termination methods align with your PCB landing pad design.
PCB Stackup and Grounding Strategy:
Solid Reference Planes: Ensure continuous ground planes adjacent to the layers where coax connects. The shield must have a low-impedance path to ground.
Impedance Control: Design the trace leading from the micro coax termination point to the IC/connector to match the cable’s impedance. Use a field solver for accuracy.
Ground Vias: Strategically place numerous ground vias near the termination points to provide an ultra-low inductance return path for the shield currents and prevent ground loops. Use stitching vias around the connector footprint.
Termination Method: Precision is Key:
Solder Landing Pads: Design dedicated pads on the PCB surface layer.
Center Conductor Pad: Size for the inner pin/terminal; connect to the controlled impedance signal trace.
Shield Ground Pads: Design large, robust pads encircling the center pad (but electrically isolated) with thermal relief connections to the internal ground plane(s) only through the dense array of grounding vias.
Clearance: Maintain precise clearance between center pad and shield pads based on cable spec and soldering process tolerance. IPC standards are your friend.
Choice of Connector / Solder Method:
Board Mount Coaxial Connectors: (e.g., u.FL, SMP, MMCX, GPPO). Provide mechanical strain relief and precise mating. Design footprint exactly to manufacturer specs.
Direct Cable Soldering: Precise hand or automated soldering of the coax center conductor and shield wires/braid directly to the PCB pads. Requires skilled assembly and robust strain relief.
Surface Mount (SMT) Coax Connectors: Offer excellent repeatability for high-volume production.
Strain Relief: Non-Negotiable Reliability
Secure Attachment: Micro coax connections are fragile. Implement robust strain relief immediately adjacent to the solder joints.
Common Methods:
Epoxy: Apply a small amount of adhesive (compatible with the cable jacket) to bond the cable jacket to the PCB surface.
Cable Ties/Clips: Use dedicated surface-mount tie-down points or clips.
Strain Relief Features: Include hooks or posts molded into connectors.
Avoid Stress: Route the cable so bends start after the strain relief point, minimizing stress directly on the solder joints.
Routing and Placement:
Minimize Length: Keep coax runs as short as possible to minimize loss.
Bend Radius: Strictly adhere to the cable’s minimum bend radius spec, especially near termination points. Avoid sharp kinks.
Separation: Keep micro coax cables away from noise sources (switching regulators, clocks, digital buses) and sensitive circuitry when possible.
Shielding: Route cables away from cutouts or gaps in reference planes that compromise their shielding effectiveness. If cables cross plane splits, ensure the shield has a good ground path on both sides.
Service Loops (If Applicable): Leave a small service loop for future access or rework, but manage slack carefully.
Assembly Process: Critical for Success
Documentation: Provide clear assembly drawings and instructions specifying termination points, orientation, soldering method, and strain relief application.
Handling: Stress proper handling procedures to prevent cable damage during assembly.
Soldering: Skilled technicians are essential. Avoid excessive heat that damages cable dielectric or melts the jacket. Use appropriate flux and solder.
Inspection: Mandatory visual inspection (microscope recommended) and electrical testing (TDR for impedance checks, continuity, isolation tests) post-assembly.
Design Comparison Table: Micro Coax Integration
Design Aspect
Critical Consideration
Potential Pitfall
Impedance Matching
Match cable and trace impedance; use field solvers
Reflections, signal distortion, SI failures
Grounding
Low-impedance shield path; dense via stitching
Ground loops, ineffective shielding, EMI
Termination
Precision pad design; shielded solder joints
Weak connections; shorts; signal leakage
Strain Relief
Secure attachment at solder points
Broken connections from vibration/use
Bend Management
Maintain min. cable bend radius
Signal degradation; cable damage
Assembly
Skilled soldering; inspection protocols
Cold joints; overheating; connection failures
Advantages & Challenges
Advantages: Superior SI/EMI performance, consistent impedance, design flexibility, reduced crosstalk.
Integrating micro coaxial cables into PCB designs is a powerful strategy for overcoming the signal integrity challenges presented by high-speed and high-frequency applications. Success hinges on meticulous attention to detail: selecting the right cable, designing precise termination structures with exceptional grounding, implementing robust strain relief, carefully planning routing paths, and ensuring a highly controlled assembly process.
By mastering these techniques, PCB designers can leverage the benefits of micro coax to create compact, reliable, and high-performance electronic products that meet the demanding requirements of modern wireless communication, high-speed computing, medical devices, and aerospace systems. Carefully integrating these cables elevates your design from functional to exceptional in the realm of signal fidelity.
Ready to Elevate Your High-Speed PCB Designs? Consult with our signal integrity experts to ensure flawless micro coax integration in your next project!
Micro coaxial cables – the tiny heroes powering high-speed signals in our electronics – are constantly evolving. As devices become more compact, powerful, and connected, these essential interconnects face new demands. Let’s explor...
Choosing the right micro coaxial cable is critical for the success and reliability of your compact electronic designs. When space is tight and signals need to be routed precisely, the decision often boils down to Rigid Micro Coaxial (S...
There is no fixed weight for standard coaxial cable assemblies, as it is determined by multiple key factors. Understanding these factors and practical weight references is crucial for engineers, purchasers, and anyone involved in select...
Venturing into the deep ocean is one of humanity’s greatest technological challenges. Deep-sea Remotely Operated Vehicles (ROVs) are our eyes and hands in these crushing depths, enabling scientific discovery, resource exploration,...
The short answer is yes, coaxial cable assemblies can be recycled after use—but the process requires careful handling due to their composite structure. As the world grapples with the growing problem of electronic waste (e-waste), recycl...
In the realm of interior design, home theater setups, studio arrangements, or commercial displays, the battle against unsightly cables is a common challenge. Exposed wires can disrupt the visual harmony of a space, turning a carefully c...
Micro coaxial cable soldering service is a specialized capability that joins ultra‑fine coaxial conductors to connectors or PCB pads with precise impedance control, mechanical reliability, and high‑frequency signal integrity. It is wide...
High-quality coaxial cable assemblies are indispensable for reliable signal transmission in critical industries like telecommunications, aerospace, defense, medical equipment, and industrial automation. Unlike standard coaxial cables, t...
Tangled cables don’t just look messy—they can slow you down, create tripping hazards, and even damage equipment over time. Whether you’re setting up a home office, gaming station, or entertainment center, effective cable management is k...
In the complex web of modern electronics and communication systems, signal integrity is the backbone of reliable performance. From the data centers powering global networks to the medical devices monitoring vital signs, and from aerospa...
Coaxial cable assemblies are critical components in signal transmission systems, used widely in industries like telecommunications, aerospace, medical equipment, and industrial automation. Their performance largely depends on shielding—...
Definition and structure
An EMI shielding micro coaxial cable is a miniaturized coaxial interconnect optimized for high‑speed, high‑integrity signal paths in electrically noisy industrial environments. It comprises a central conducto...
Engineers and buyers often need micro coaxial cable samples to validate fit, signal integrity, and manufacturability before committing to volume orders. This guide explains how to secure free samples, what to specify to avoid back-and-f...
The relentless demand for faster data, driven by AI, cloud computing, streaming, and 5G, is pushing data centers to their limits. Traditional cabling solutions are struggling to keep pace. This is where High-Density Micro-Coaxial (Micr...
In the rapidly advancing field of medical technology, reliable connectivity is not just a convenience—it’s a matter of life and death. From high-resolution imaging systems to minimally invasive surgical tools, medical devices demand pre...
Coaxial cable assemblies are critical components in telecommunications, aerospace, industrial automation, and consumer electronics, transmitting high-frequency signals with minimal interference. However, corrosion—caused by moisture, ch...
Electric Vehicles (EVs) promise a cleaner, quieter future, but their complex high-voltage battery packs require constant, precise monitoring to ensure safety, performance, and longevity. At the heart of this critical task lies the Batte...
Coaxial cable assemblies are critical components in various industries such as telecommunications, aerospace, medical equipment, and automotive electronics. Their performance and reliability are closely tied to proper packaging, which n...
Micro coaxial cables are the unsung heroes of modern electronics, enabling clear signals in everything from smartphones and medical devices to aerospace systems and automotive sensors. But their tiny size makes their shielding effectiv...
Micro coaxial cables are the unsung heroes powering our smallest, most advanced electronics – from life-saving medical implants to cutting-edge aerospace systems and the latest smartphones. But their tiny size and delicate construction ...
Within the intricate world of high-frequency electronics and RF systems, consistency is paramount. For signals traveling multiple pathways simultaneously – such as in phased array antennas, beamforming networks, power combiners/dividers...
In modern automotive technology, radar systems play a crucial role in ensuring safety, from adaptive cruise control to collision avoidance. At the heart of these systems lies a seemingly simple yet vital component: the coaxial cable. Th...
1. Core Structure and Signal Transmission MechanismMicro-Coaxial CablesDesign: A miniature version of traditional coaxial cables, featuring:A central conductor (copper or silver-plated copper).Dielectric insulation (e.g., PTFE or ...
In the intricate world of scientific research equipment, coaxial cables play a pivotal role. These cables are not just ordinary connectors; they are the lifelines that ensure seamless data transfer, precise signal transmission, and reli...
A remarkable milestone has been achieved in the coaxial cable industry as recent data reveals that the export volume has surged to a new high, marking a significant leap forward for the sector. This surge not only reflects the strong co...
Modern trains are marvels of engineering, relying on complex electronic systems for safe and efficient operation. At the heart of these systems – controlling everything from signaling and automatic train protection (ATP) to door control...
Passive Intermodulation (PIM) has long been a critical challenge in high-frequency communication systems, where even minute unwanted signals can disrupt signal integrity and degrade network performance. Micro-coaxial cables, widely used...
Quantum computing promises revolutionary power, but building these machines requires overcoming extreme engineering challenges. Operating at temperatures colder than deep space and manipulating incredibly fragile quantum states demands ...
Introduction:
Imagine sending a billion-dollar science laboratory to Mars. It needs to survive the journey, land safely, and then operate flawlessly in one of the harshest environments imaginable. Every component matters, especially ...
In the ever-evolving landscape of modern communication, coaxial cable stands as an indispensable pillar, facilitating the seamless transmission of signals across a vast array of applications. From television broadcasting to high-speed i...
Coaxial cables are crucial for transmitting high-frequency electrical signals with minimal interference. This article offers an overview of their specifications and technical data.
1. Structure of Coaxial Cables
A coaxial cable ...
Recently, our factory’s high-performance coaxial cable has officially clinched the Green Product Award, a distinguished honor presented by the International Green Technology & Sustainability Council (IGTSC) following a strict t...
In an era where precision and reliability are paramount, the packaging of coaxial cables has undergone a transformative overhaul to address the challenges of modern logistics, environmental sustainability, and end-user performance. This...
When sourcing micro coaxial cables for electronics, telecommunications, or medical devices, one critical question arises: Should you buy imported or domestically produced cables? Price is often the deciding factor, but cost al...
Selecting the right dielectric material for micro coaxial cables is critical for high-frequency performance, reliability, and cost-effectiveness. Polytetrafluoroethylene (PTFE) and Polyethylene (PE) are the two dominant contenders. Unde...
Introduction to Coaxial Cables
Coaxial cable (or coax) remains one of the most reliable transmission mediums for high-speed internet and television signals. Originally developed in the 1880s and perfected throughout the 20th century,...
The successful completion of the Environmental Impact Assessment (EIA) for coaxial cable systems marks a pivotal advancement in the telecommunications industry’s journey toward sustainability. This assessment, conducted in ali...
In the relentless drive for smaller, faster, and more powerful electronics, a silent hero quietly enables success: the micro coaxial cable. These miniature marvels are far more than just tiny wires; they are the critical arteries ...
In the first three quarters of 2025, our factory’s coaxial cable products have achieved record-breaking sales performance, with the total sales volume increasing by 65% compared with the same period last year and the sales revenue...
In the fast-paced world of smartphone manufacturing, the demand for thinner micro-coaxial cables has become a crucial factor in driving innovation. As consumers continue to seek sleeker, more lightweight devices with enhanced functional...
Overview of I-PEX Micro Coaxial Cable Connectors
I-PEX is a global leader in micro coaxial cable solutions, specializing in high-performance IPEX micro coax connectors and micro coaxial cable assemblies. These products are designed for.
Meta Description: Discover our premium Flexible Micro-Coaxial Assemblies—engineered for high-frequency signal integrity, durability, and versatility in aerospace, medical, telecom, and robotics applications.
What Are Flexible .
Contact Us Micro Coaxial Cable factory-(FRS).
Feel free to reach out to us for any inquiries or orders