Micro coaxial cables (often called “micro coax”) are essential components for transmitting high-speed digital signals, RF signals, and low-level analog signals in modern electronics where space is constrained and signal integrity is paramount. Integrating them seamlessly onto a Printed Circuit Board (PCB) requires careful planning and execution. This comprehensive guide explores the critical steps and best practices for successful micro coaxial cable integration, ensuring robust performance and enhanced reliability in your designs.
Why Use Micro Coaxial Cables on PCBs?
Before diving into how, understanding the why is crucial:
Unrivaled Signal Integrity (SI): Micro coax provides superior electromagnetic interference (EMI) shielding compared to PCB traces, especially critical for:
High-speed serial interfaces (USB 3+/4, PCIe Gen 3/4/5, HDMI 2.1+, DisplayPort, Thunderbolt)
Sensitive analog signals (medical sensors, instrumentation).
Minimal Crosstalk: The outer shield effectively isolates the inner conductor from neighboring signals.
Impedance Control: Coax cables maintain a consistent characteristic impedance (e.g., 50Ω, 75Ω) along their length, critical for minimizing reflections.
Reduced Radiation: Significantly lower EMI emissions compared to exposed differential pairs or single-ended traces at high frequencies.
Flexibility: Micro coax allows routing between stacked boards, around components, or to external connectors/devices where rigid PCB routing is impossible or impractical.
Key Considerations for Integrating Micro Coax onto PCBs
Selecting the Right Micro Coaxial Cable:
Impedance: Match the cable’s impedance (50Ω or 75Ω are standard) to your source, destination, and PCB traces.
Size: Diameters range from ~0.4mm to ~2.0mm (e.g., RG-178, RG-316). Choose based on space constraints and required bend radius.
Frequency Range: Ensure the cable’s specified bandwidth exceeds your signal frequencies.
Shield Effectiveness: Look for cables with high braid or foil + braid coverage (e.g., >95%) for best EMI performance.
Flex Life: Critical for dynamic applications like robotics or foldable devices. Ensure sufficient durability.
Termination Compatibility: Verify available termination methods align with your PCB landing pad design.
PCB Stackup and Grounding Strategy:
Solid Reference Planes: Ensure continuous ground planes adjacent to the layers where coax connects. The shield must have a low-impedance path to ground.
Impedance Control: Design the trace leading from the micro coax termination point to the IC/connector to match the cable’s impedance. Use a field solver for accuracy.
Ground Vias: Strategically place numerous ground vias near the termination points to provide an ultra-low inductance return path for the shield currents and prevent ground loops. Use stitching vias around the connector footprint.
Termination Method: Precision is Key:
Solder Landing Pads: Design dedicated pads on the PCB surface layer.
Center Conductor Pad: Size for the inner pin/terminal; connect to the controlled impedance signal trace.
Shield Ground Pads: Design large, robust pads encircling the center pad (but electrically isolated) with thermal relief connections to the internal ground plane(s) only through the dense array of grounding vias.
Clearance: Maintain precise clearance between center pad and shield pads based on cable spec and soldering process tolerance. IPC standards are your friend.
Choice of Connector / Solder Method:
Board Mount Coaxial Connectors: (e.g., u.FL, SMP, MMCX, GPPO). Provide mechanical strain relief and precise mating. Design footprint exactly to manufacturer specs.
Direct Cable Soldering: Precise hand or automated soldering of the coax center conductor and shield wires/braid directly to the PCB pads. Requires skilled assembly and robust strain relief.
Surface Mount (SMT) Coax Connectors: Offer excellent repeatability for high-volume production.
Strain Relief: Non-Negotiable Reliability
Secure Attachment: Micro coax connections are fragile. Implement robust strain relief immediately adjacent to the solder joints.
Common Methods:
Epoxy: Apply a small amount of adhesive (compatible with the cable jacket) to bond the cable jacket to the PCB surface.
Cable Ties/Clips: Use dedicated surface-mount tie-down points or clips.
Strain Relief Features: Include hooks or posts molded into connectors.
Avoid Stress: Route the cable so bends start after the strain relief point, minimizing stress directly on the solder joints.
Routing and Placement:
Minimize Length: Keep coax runs as short as possible to minimize loss.
Bend Radius: Strictly adhere to the cable’s minimum bend radius spec, especially near termination points. Avoid sharp kinks.
Separation: Keep micro coax cables away from noise sources (switching regulators, clocks, digital buses) and sensitive circuitry when possible.
Shielding: Route cables away from cutouts or gaps in reference planes that compromise their shielding effectiveness. If cables cross plane splits, ensure the shield has a good ground path on both sides.
Service Loops (If Applicable): Leave a small service loop for future access or rework, but manage slack carefully.
Assembly Process: Critical for Success
Documentation: Provide clear assembly drawings and instructions specifying termination points, orientation, soldering method, and strain relief application.
Handling: Stress proper handling procedures to prevent cable damage during assembly.
Soldering: Skilled technicians are essential. Avoid excessive heat that damages cable dielectric or melts the jacket. Use appropriate flux and solder.
Inspection: Mandatory visual inspection (microscope recommended) and electrical testing (TDR for impedance checks, continuity, isolation tests) post-assembly.
Design Comparison Table: Micro Coax Integration
Design Aspect
Critical Consideration
Potential Pitfall
Impedance Matching
Match cable and trace impedance; use field solvers
Reflections, signal distortion, SI failures
Grounding
Low-impedance shield path; dense via stitching
Ground loops, ineffective shielding, EMI
Termination
Precision pad design; shielded solder joints
Weak connections; shorts; signal leakage
Strain Relief
Secure attachment at solder points
Broken connections from vibration/use
Bend Management
Maintain min. cable bend radius
Signal degradation; cable damage
Assembly
Skilled soldering; inspection protocols
Cold joints; overheating; connection failures
Advantages & Challenges
Advantages: Superior SI/EMI performance, consistent impedance, design flexibility, reduced crosstalk.
Integrating micro coaxial cables into PCB designs is a powerful strategy for overcoming the signal integrity challenges presented by high-speed and high-frequency applications. Success hinges on meticulous attention to detail: selecting the right cable, designing precise termination structures with exceptional grounding, implementing robust strain relief, carefully planning routing paths, and ensuring a highly controlled assembly process.
By mastering these techniques, PCB designers can leverage the benefits of micro coax to create compact, reliable, and high-performance electronic products that meet the demanding requirements of modern wireless communication, high-speed computing, medical devices, and aerospace systems. Carefully integrating these cables elevates your design from functional to exceptional in the realm of signal fidelity.
Ready to Elevate Your High-Speed PCB Designs? Consult with our signal integrity experts to ensure flawless micro coax integration in your next project!
Introduction: The Need for Speed at the Edge
Edge computing is revolutionizing how we process data. By bringing computation closer to where data is generated – sensors, IoT devices, cameras, machines – it slashes the time wasted send...
The short answer is: Absolutely yes. Coaxial Cable Assemblies have become an indispensable component in modern medical equipment, thanks to their unique structural design and performance advantages that perfectly align with the strict o...
The short answer is yes—coaxial cable assemblies are not only compatible with satellite TV systems but also critical to their performance. However, compatibility is not universal: it depends on whether the assembly meets the unique sign...
Coaxial Cable Assemblies are the backbone of reliable signal transmission in industries ranging from telecommunications and aerospace to medical equipment and industrial automation. Unlike generic cables, these assemblies—comprising a c...
In the realm of telecommunications, data centers, and industrial connectivity, coaxial cables play a pivotal role in transmitting high-frequency signals with minimal loss. However, the way these cables are terminated can significantly i...
Medical-grade micro coaxial cables are specialized components critical to the function of life-saving and diagnostic equipment like endoscopes, catheters, ultrasound probes, imaging systems, and patient monitoring devices. Unlike standa...
Micro-coaxial power lines pack impressive power transfer into tiny spaces. But pushing high voltages through these miniature channels creates a critical challenge: preventing dangerous electrical discharges and ensuring safe, reliable ...
In the intricate realm of medical imaging, where precision and reliability are paramount, coaxial cables play a crucial yet often overlooked role. These unassuming cables are the unsung heroes that ensure the seamless transmission of vi...
The relentless demand for higher bandwidth, faster speeds, and miniaturized electronics is pushing traditional coaxial cable technology to its limits. Within the intricate confines of next-generation micro-coaxial cables, a critical bot...
Installing cables, whether for electrical systems, data networks, or telecommunications, can be a challenging task without the right tools. The right cable pulling tools not only simplify the process but also reduce the risk of damage t...
Q: What’s the typical capacitance per foot for micro coaxial cables?
A: There isn’t one single “typical” value applicable to all micro coaxial cables. However, for common thin micro coax cables like RG178 or s...
For those who rely on seeing in the dark – soldiers, security personnel, hunters, or wildlife observers – night vision goggles (NVGs) are indispensable tools. The magic happens in the low-light sensors at the heart of these device...
In the complex web of modern electronics and communication systems, signal integrity is the backbone of reliable performance. From the data centers powering global networks to the medical devices monitoring vital signs, and from aerospa...
In the realm of professional cable installation, the difference between a seamless, reliable setup and a problematic, short-lived one often lies in the tools and accessories used. Whether dealing with electrical, data, coaxial, or fiber...
The answer is a resounding yes. Coaxial cable assemblies are indispensable components in broadcast television systems, playing a critical role in ensuring the reliable, high-quality transmission of audio and video signals throughout the...
Meta Description: Discover the differences between shielded and unshielded micro coaxial cables. Learn which type suits your project for optimal performance, EMI protection, and cost-efficiency.
When selecting micro coaxial ...
This is a crucial question when designing or using tiny coaxial cables (“micro coax”) in applications like medical devices, miniature sensors, high-speed digital connections, or aerospace systems. Pushing these delicate cabl...
Signal loss in coaxial cable assemblies directly impacts the performance of communication, test, and industrial systems—leading to degraded signal quality, reduced transmission distance, or even system failure. Accurate calculation of t...
Medical devices are critical tools where performance, reliability, and patient safety are non-negotiable. As these devices become increasingly sophisticated, smaller, and more portable, the components within them must keep pace. Micro c...
Coaxial cables, a staple of wired communication since the 1930s, continue to thrive in modern technology despite competition from fiber optics and wireless solutions. Their unique design—combining high bandwidth, durability, and electro...
In the modern retail landscape, a robust and reliable network is the backbone of seamless operations, enhanced customer experiences, and efficient management. Shopping malls, as bustling hubs of commerce and entertainment, demand networ...
The relentless drive towards smaller, lighter, and more capable military systems places immense pressure on every component – especially the critical infrastructure connecting them: cables. Enter the spotlight: Battlefield-Ready Micro-...
In the highly competitive coaxial cable industry, our factory’s products have recently garnered widespread acclaim from industry experts, and their positive evaluations have become a hot topic in the market.
A team of well-know...
The relentless pursuit of lighter, faster, and more capable aerospace platforms hinges on the critical components enabling data transmission and power delivery deep within their electronic ecosystems. Enter the ruggedized micro-coaxial...
Forget bulky cables and signal dropouts. If you’re navigating the rapidly evolving landscape of factory automation – deploying robotics, vision systems, or complex sensor networks – you’ve likely encountered the critica...
Introduction: The Unseen Challenge
Within the complex, high-stakes environment of nuclear power plants (NPPs), reliable signal transmission isn’t just important – it’s critical for safety, control, and monitoring. Ordina...
Imagine downloading a full HD movie in a blink, or medical scanners delivering crystal-clear images instantly during life-saving procedures. The relentless surge of data in our world – from streaming services and cloud computing to arti...
In the fast-paced world of live event production, from concerts and sports matches to conferences and theater shows, reliable signal transmission is the backbone of a successful event. Among the various cables used, coaxial cable stands...
Modern cars are becoming marvels of electronic intelligence, largely thanks to Advanced Driver Assistance Systems (ADAS) like automatic emergency braking, adaptive cruise control, and blind-spot monitoring. At the heart of many of...
Autonomous vehicles (AVs) represent the cutting edge of transportation technology. They promise safer roads, reduced congestion, and unprecedented mobility. But beneath the sleek exteriors and sophisticated software lies a hidden, yet a...
Micro-coaxial cables are the unsung heroes of modern electronics, carrying high-frequency signals critical for everything from aerospace systems and medical devices to robotics and industrial automation. But what happens when these tiny...
AbstractMicro-coaxial cables have become indispensable in modern imaging systems, particularly in smartphone cameras and augmented/virtual reality (AR/VR) devices, where high-speed data transfer, space constraints, and signal integrit...
The demand for high-speed, reliable signal transmission in increasingly compact and complex electronic devices is driving unprecedented growth in the global micro-coaxial cable market. As we look towards 2025, the industry stands poise...
Submarine sonar arrays are the sophisticated “ears” beneath the waves, enabling naval vessels, research submersibles, and autonomous underwater vehicles (AUVs/UUVs) to detect, navigate, and map the ocean depths. But this adv...
Introduction to Micro-Coaxial Cables in 6G TechnologyMicro-coaxial cables are emerging as critical components in 6G communication systems, enabling high-speed data transfer, ultra-low latency, and reliable connectivity. As 6G networks a...
Introduction: For mission-critical devices in medical implants, aerospace systems, industrial automation, and advanced communications, micro-coaxial cables deliver precious signals. Yet, their minute size makes them terrifyingly vu...
Understanding Signal Attenuation in Micro Coaxial CablesSignal attenuation occurs when the transmitted signal weakens as it travels through the cable. Key factors contributing to attenuation include:
Conductor Resistance: Ener...
n an era defined by lightning-fast connectivity and shrinking electronic devices, micro coaxial cables have emerged as unsung heroes powering the seamless flow of data. These miniature yet mighty cables are engineered to meet the escala...
The demand for miniaturized, high-frequency electronics in applications like 5G, medical implants, and aerospace systems has driven the development of ultra-thin micro-coaxial conductors. However, a critical challenge in these tiny cabl...
For those in the market for coaxial cables, the warranty period is undoubtedly a crucial factor. It serves as a direct guarantee for your post-purchase rights and interests, providing a safety net when unexpected issues arise with the p...
Meta Description: Discover the advanced features and benefits of Industrial Micro-Coaxial Wiring—engineered for precision, durability, and high-speed signal transmission in industrial environments.
What is Industrial Micro-Co.
Micro Coaxial Cable: High-Quality Solutions for Precision Applications
Micro coaxial cables are essential components in high-performance electronic applications, providing reliable signal transmission in compact and flexible designs. A.
Contact Us
Feel free to reach out to us for any inquiries or orders.