Documenting micro coaxial cable test results accurately is crucial for quality control, troubleshooting, failure analysis, and ensuring reliable performance in your applications. Proper documentation creates a clear record for anyone reviewing the data now or in the future. Here’s a step-by-step guide focusing on what matters most:
Tester Name/ID: Person(s) who performed the tests.
Location: Where testing was conducted (if relevant).
Instrumentation Used: List the key test equipment (e.g., “VNA: Keysight N9918A”, “LCR Meter: Fluke PM6306”, “TDR: Tektronix DSA8300”, “Cable Tester: MultiContact CrimpStar IV”).
Cable Specification & Identification:
Manufacturer & Part Number: (e.g., “CompanyX – MCX-042-50-SS”)
Detailed Cable Spec: Impedance (50Ω or 75Ω), core conductor material/gauge (e.g., “26AWG Silver Plated Cu”), dielectric type (e.g., “Foamed PTFE”), shield construction (e.g., “Dual Shield: Braid + Foil”), outer jacket material (e.g., “PVC”), overall diameter (e.g., “1.13mm”).
Cable Length Being Tested: Specify precisely (e.g., “1.00 meter”).
Cable Sample Identifier/Lot/Batch Number: Essential for traceability.
Connector Types: Specify the connectors on each end precisely (e.g., “End A: U.FL (IPX)”, “End B: MMCX”).
Connector Termination Quality Notes: Any observations during visual inspection before electrical testing.
Test Setup Details:
Test Configuration Sketch/Diagram: (Highly Recommended) Even a simple sketch showing:
Test equipment inputs/outputs.
Cable under test orientation.
How connectors interface to fixtures/test ports (e.g., “End A -> VNA Port 1 via SMA(f)-U.FL(m) adapter”). Include model numbers of key adapters/fixtures.
If using a reference plane or calibration type.
Calibration: Record calibration method used (e.g., “SOLT Calibration performed on VNA Ports 1 & 2 to SMA(f) interface plane prior to test”) and date of last calibration.
Test Parameters: Specific settings on the instruments:
VNA/TDR: Start/Stop Frequency, Number of Points (or Resolution), IF Bandwidth, Averaging Factor, Power Level. Especially for TDR: Pulse Rise Time, Acquisition Time.
LCR Meter: Test Frequency (e.g., “1 MHz”), Test Signal Level (e.g., “1V RMS”).
Environmental Conditions: Temperature and Humidity (if controlled or significantly deviating from standard lab conditions).
Connector Torque: If torque wrenches are used for mating connectors to test ports, note the applied torque (e.g., “U.FL mating: Finger tight only”, “SMA adapter mating: 8 in-lbs”).
Measured Test Results:
Test Specification: Clearly state the specification/standard each test relates to (e.g., “Insertion Loss < 0.8 dB @ 6 GHz per MIL-DTL-17” or “DC Resistance < 0.5 Ohms/m per Manufacturer Spec Sheet”).
Recorded Values: For each test performed:
Continuity & Shorts: “Pass” (Open between center/shield, continuity along center, shield continuity established) OR detailed description of any failure.
DC Resistance: Value measured at each conductor (Center Conductor Ω/m or Ω total; Shield Ω/m or Ω total).
Capacitance (pF/m or pF total): Measured value.
Insulation Resistance: Value measured (e.g., “> 1000 MΩ @ 500VDC”) and test voltage/duration.
Insertion Loss/Attenuation: Results at specified frequency points, especially maximum operating frequency and critical intermediate points. (e.g., “0.65 dB @ 1 GHz”, “1.05 dB @ 6 GHz”). Plotting is ideal, but tabulate key points.
Return Loss / VSWR: Results at specified frequency points. (e.g., “Return Loss: 18 dB @ 6 GHz” or “VSWR: 1.25:1 @ 6 GHz”).
Propagation Delay: Measured value (e.g., “4.85 ns/m”).
Delay Skew (if applicable): Between conductors in a multi-cable assembly.
Structural Return Loss (SRL) / Impedance Profile: Key observations from TDR trace (e.g., “Impedance average: 51.2Ω”, “Maximum deviation: ±2.5Ω”, location of any significant anomalies).
Bend Radius Test Results: Document the test radius used (per specification), number of flex cycles, Pass/Fail status with failure criteria, and any performance measurement taken after testing (e.g., “Loss after 1000 bends: +0.15dB @ 6GHz vs pre-bend”).
Conclusion & Review:
Pass/Fail Status: Clear statement: “All tests passed specifications” or “Failed: Shield DC Resistance exceeded limit – See Test #DCR-S02”.
Approvals: Space for signatures/dates of test engineer and reviewer.
Attachment Reference: If plots or detailed data files are generated, reference them clearly here (e.g., “See attached file: MCX-042-Batch_Plots.pdf”).
Formatting Tips for Clarity:
Use Tables: Organize results logically. Have separate tables for Cable Info, Test Setup, and Result Data.
Be Specific: Instead of “Connector”, write “U.FL (IPX)”. Instead of “Low Loss”, write “Insertion Loss = 0.72 dB @ 6 GHz”.
Plot Graphs: Where trends matter (like Loss/RL vs. Frequency), graphs are essential. Ensure axes are clearly labeled. Save plots as images or PDFs linked to the report.
Notes Section: Add a section for any relevant observations not captured elsewhere (e.g., “Minor shield fraying noted at End A during connector visual – did not affect electrical results”).
Electronic & Physical Copies: Store securely. Ensure digital filenames are descriptive and include date/lot number.
Sample Results Table Snippet:
Test Parameter
Specification
Measured Value
Unit
Frequency (if app.)
Result
Notes
Cable ID
MCX-042-50-SS-Lot#123A
Length: 1.00m, Conn: UFL-MMCX
Continuity
Open: CC-Shield Cont: CC, Shield
Pass
Pass
Visual: No damage
DC R – Center Cond.
< 0.20 Ω/m
0.18
Ω/m
Pass
DC R – Braid Shield
< 0.05 Ω/m
0.042
Ω/m
Pass
Insertion Loss
≤ 0.80 dB @ 6GHz
0.72
dB
6.0 GHz
Pass
Fig. 1
Return Loss
≥ 18 dB @ 6GHz
19.5
dB
6.0 GHz
Pass
Fig. 1
Bend Radius Test
10x Cable OD, 1000 cycles
Pass
Loss Δ @6GHz: +0.10dB
(Add more rows as needed)
Common Mistakes to Avoid:
Missing Traceability: No cable part number, lot number, or unique sample ID.
Unclear Test Setup: Not documenting adapters, calibration reference plane, or torque makes replication impossible.
Reporting Only “Pass/Fail”: Losing the actual measured values provides no detail for future analysis or trend spotting.
Vague Results: Reporting “Insertion Loss: Good” instead of specific values at specific frequencies.
Missing Frequency Points: Not reporting loss/RL at the cable’s maximum specified operating frequency.
Ignoring Visuals: Failing to document pre-existing physical damage can lead to incorrect failure attribution later.
Ignoring Test Conditions: Not recording temperature/humidity or specific instrument settings can make data hard to interpret or compare later.
No Summary/Conclusion: Forcing the reader to hunt through all data to determine if the cable passed overall requirements.
Disorganized Presentation: Scatter information, making the report hard to follow.
Coaxial cables are the unsung heroes of modern connectivity, powering everything from home televisions and internet routers to security cameras and satellite systems. Their unique design—featuring a central conductor, insulating layer, ...
Choosing the right micro coaxial cable for aerospace isn’t just about performance; it’s about absolute reliability in the harshest environments imaginable. Aircraft, satellites, and spacecraft demand components that can with...
The world of military technology operates at the bleeding edge, demanding unwavering reliability in the harshest environments. At the heart of countless critical systems – from radar and electronic warfare to satellite communications an...
Coaxial cable assemblies are critical components in numerous applications, from telecommunications and broadcast systems to aerospace and medical equipment. Signal leakage in these assemblies can lead to significant issues, including de...
In the dynamic world of outdoor broadcasting, where every moment of live transmission matters, the quality and reliability of the equipment used are of utmost importance. One such crucial component is the weatherproof coaxial cable. Thi...
Radar Systems: Precision at Millimeter WavesA. Phased Array AntennasSemi-rigid cables are critical for military and aerospace radar arrays due to their ability to maintain stable phase relationships across thousands of antenna elem...
Imagine facing a tangled nest of identical, hair-thin micro-coaxial cables during a critical system upgrade or a frantic troubleshooting session. The seconds tick by as you meticulously trace connections, hoping you don’t misplug and ca...
Cable glands, often referred to as cable connectors or cable fittings, are critical components in electrical and mechanical systems, designed to create a secure, environmental seal where cables enter enclosures, equipment, or junction b...
For engineers and system designers working with micro coaxial cables in applications demanding movement and reliability – medical robotics, wearable tech, aerospace assemblies, sophisticated test equipment – conductor stranding is...
In today’s technology-driven world, Coaxial Cable Assemblies serve as the backbone of signal transmission in countless industries—from telecommunications and aerospace to medical equipment and industrial automation. These assemblies, wh...
In the high-stakes world of military operations, reliable communication isn’t just convenient – it’s mission-critical and often life-saving. When every gram, millimeter, and split-second counts, micro coaxial cables em...
When working with coaxial cable assemblies, one of the most common questions engineers, technicians, and procurement professionals ask is: “Are coaxial cable assemblies compatible with all connector types?” The short answer is no—compat...
Coaxial cable assemblies are critical components in RF (Radio Frequency) communication systems, including wireless base stations, satellite terminals, radar systems, test equipment, and industrial IoT devices. Their performance directly...
Coaxial cables and microstrip lines are two fundamental transmission line structures widely used in electronics and telecommunications. While both serve to transmit high-frequency signals, they differ significantly in design, performanc...
The race towards practical quantum computing hinges on overcoming immense technical hurdles. Among the most critical is the challenge of reliably controlling and measuring fragile quantum bits (qubits), the fundamental units of quantum ...
In the realm of interior design, home theater setups, studio arrangements, or commercial displays, the battle against unsightly cables is a common challenge. Exposed wires can disrupt the visual harmony of a space, turning a carefully c...
Meta Description: Discover how micro-coaxial cables enable reliable high-speed data transfer for drones. Learn key selection criteria, top brands, and FAQs for optimized drone performance.
Why High-Speed Data Transfer Matter...
Introduction: Precision in Motion Demands Resilience
In the intricate dance of modern electronics, where devices vibrate on factory floors, rumble down highways, endure turbulent flights, or operate within intricate medical instrumen...
In the rapidly evolving fields of medical imaging, industrial non – destructive testing, and scientific research, ultrasound technology has become an indispensable tool. At the heart of these advanced ultrasound systems lies a cri...
Coaxial cable assemblies are critical components in various industries such as telecommunications, aerospace, medical equipment, and automotive electronics. Their performance and reliability are closely tied to proper packaging, which n...
Introduction to Micro-Coaxial Cables in 6G TechnologyMicro-coaxial cables are emerging as critical components in 6G communication systems, enabling high-speed data transfer, ultra-low latency, and reliable connectivity. As 6G networks a...
In the rapidly evolving landscape of renewable energy, wind turbines have emerged as a crucial source of clean power. As the demand for wind energy continues to grow, ensuring the reliable and efficient operation of wind turbines become...
In an era where smart home technology is reshaping modern living, the role of robust and reliable connectivity cannot be overstated. At the heart of seamless smart home integration lies coaxial cable—a time-tested solution that con...
In the ever – evolving field of coaxial cable manufacturing, the adoption of new materials has become a key driver of progress. Our company is proud to be at the forefront of this innovation by integrating a cutting – edge n...
In the vast world of underwater connectivity, coaxial cables play a pivotal role in ensuring seamless submarine communications. This article will explore the importance, functionality, and considerations of coaxial cables in submarine c...
In the realm of radio communications, high-frequency coaxial cables play a pivotal role in ensuring efficient and reliable signal transmission. As technology continues to advance, the demand for high-quality coaxial cables capable of ha...
IntroductionThe rapid evolution of augmented reality (AR) and virtual reality (VR) headsets is pushing hardware components to their limits. One critical yet often overlooked element is the micro-coaxial cable, a tiny but vital part res...
In the realm of modern connectivity, long-distance cable runs are a fundamental aspect of various industries, from telecommunications and networking to audio-visual setups. However, as signals travel over extended cable lengths, they en...
You push your gaming console hard. Demanding games, fast frame rates, stunning visuals – it all demands immense power, delivered with extreme precision. Hidden deep within your PlayStation, Xbox, or other advanced console lies the unsun...
Introduction
The rollout of 5G network infrastructure has been a global phenomenon, promising faster data speeds, lower latency, and the ability to connect a vast number of devices simultaneously. As the demand for high – perfo...
A significant milestone has been reached in our factory’s history as we proudly announce the successful mass production of our high – performance coaxial cables. This achievement is not just a result of months of hard work b...
In the realm of signal transmission, signal loss has long been a persistent headache, affecting the quality and reliability of various communication and data systems. However, our coaxial cable stands out as an effective solution to mit...
If you’re setting up a satellite dish, having the right wiring kit can make all the difference. A satellite dish wiring kit with premium cables isn’t just an add-on—it’s a key part of ensuring reliable signal, clear reception, and long-...
In the dynamic world of modern manufacturing, multi-robot assembly lines represent the pinnacle of efficiency, speed, and precision. These complex systems, where multiple robotic arms collaborate seamlessly, demand flawless communicatio...
AbstractShielding effectiveness (SE) is a critical metric for evaluating the performance of micro-coaxial cables in high-frequency and high-interference environments.
IntroductionMicro-coaxial cables are widely used in 5G communic...
Choosing the right micro-coaxial cable isn’t just a detail in drone design and operation; it’s a critical factor impacting video transmission reliability, control signal integrity, weight, and ultimately, the success of your...
Structural Advantages for Medical UseThe core architecture of micro-coaxial cables—comprising a central conductor, dielectric insulation, shielding layer, and protective jacket—is optimized for medical environments:
Miniaturizati...
A leading national television network has recently selected our high-performance coaxial cables for its large-scale broadcast infrastructure upgrade, marking a significant milestone in our commitment to delivering reliable connectivity ...
Coaxial cables are crucial for transmitting high-frequency electrical signals with minimal interference. This article offers an overview of their specifications and technical data.
1. Structure of Coaxial Cables
A coaxial cable ...
Meta Description: Discover the advanced features and benefits of Industrial Micro-Coaxial Wiring—engineered for precision, durability, and high-speed signal transmission in industrial environments.
What is Industrial Micro-Co.
IntroductionThe High-Temperature Resistant Micro-Coaxial Cable is a cutting-edge connectivity solution engineered to deliver exceptional performance in extreme thermal environments. Combining precision engineering with advanced mate.
Contact Us
Feel free to reach out to us for any inquiries or orders.