Medical-grade micro coaxial cables are specialized components critical to the function of life-saving and diagnostic equipment like endoscopes, catheters, ultrasound probes, imaging systems, and patient monitoring devices. Unlike standard industrial coaxial cables, they must meet stringent specifications to ensure patient safety, device reliability, and consistent performance in demanding medical environments. Here are the key specifications:
Electrical Performance:
Impedance: Strictly controlled impedance, almost universally 50 Ohms. This ensures minimal signal reflection and maximum power transfer for accurate data transmission of high-frequency signals (like video or ultrasound echoes).
Attenuation: Very low signal loss (attenuation) per unit length, especially critical for high-frequency applications (>1 GHz). Measured in dB/meter or dB/100 feet at specific frequencies. Lower attenuation allows longer cable runs or lower transmission power.
Velocity of Propagation (Vp): Consistent signal speed, usually expressed as a percentage of the speed of light (e.g., 70%). Important for timing-critical signals and impedance matching.
Shielding Effectiveness: Excellent shielding (typically multiple layers: braid + foil) is crucial to prevent external electromagnetic interference (EMI) from disrupting sensitive signals and to prevent signals from the cable interfering with other equipment. Critical in EMI-heavy hospital settings. Often specified by dB reduction at specific frequencies.
Mechanical Reliability & Flexibility:
Size: Extremely small outer diameters (OD), often ranging from 0.40 mm (AWG 50) to 1.78 mm (AWG 36) or similar micro sizes. Essential for minimally invasive procedures and integration into compact devices.
Flex Life: Exceptional resistance to fatigue from repeated bending, flexing, twisting, and articulation. Must withstand tens of thousands or even hundreds of thousands of dynamic cycles without performance degradation. Crucial for cables inside articulating endoscopes or catheters.
Conductor: Typically high-quality copper alloy (like silver-coated copper, tin-coated copper, or bare copper) for conductivity and flexibility. Stranded designs are common for dynamic applications.
Dielectric: High-performance insulating material (e.g., specialized fluoropolymers like PTFE, FEP, or ETFE) ensuring low signal loss, stable impedance, and resistance to crushing and abrasion. Material choice heavily impacts flexibility and electrical properties.
Jacket: Biocompatible material that must withstand sterilization and environmental exposure while being flexible and offering protection. Common materials include specialized polyurethanes, silicones, and fluoropolymers.
Biocompatibility & Safety:
Material Safety: All cable materials in direct or potential contact with the patient must meet rigorous biocompatibility standards, primarily ISO 10993 (Biological evaluation of medical devices). This involves cytotoxicity, sensitization, and irritation testing. Materials also meet USP Class VI (highest plastic purity standard) for implantable or fluid-contacting applications.
Low Particulates: Minimal shedding of particles from cable materials is essential, especially in sterile fields or implantable devices.
Compatibility: Must withstand repeated exposure to medical sterilization methods without degrading electrical or mechanical properties: Autoclaving (steam), Ethylene Oxide (EtO), Gamma Radiation, and Chemical Disinfectants (like isopropyl alcohol, bleach solutions – check specific compatibility).
Environmental Stability: Resistance to temperature extremes (both high sterilization temps and low storage/operating temps), humidity, bodily fluids, and cleaning agents.
Regulatory Compliance & Traceability:
Manufacturing Standards: Produced under stringent quality management systems like ISO 13485, specifically designed for medical device manufacturing.
Traceability: Full material traceability (Lot/Batch numbers) is essential for safety recalls and quality control.
End Device Approval: While the cable itself isn’t FDA-approved as a device, it must be manufactured to standards acceptable for integration into FDA-cleared or CE-marked medical devices. The OEM validates the entire assembly.
In Summary:
Medical-grade micro coax isn’t defined by a single “magic number” spec. Instead, it’s a comprehensive set of demanding requirements focusing on:
Consistent, High-Fidelity Signal Transmission: (Impedance, Attenuation, Shielding)
Ultra-Reliability in Motion: (Flex Life, Small Size, Durability)
Withstanding Medical Processes: (Sterilization Compatibility)
Traceable, Controlled Manufacturing: (ISO 13485, Material Traceability)
Choosing the right medical-grade micro coaxial cable means verifying all these specifications align with the specific performance, environmental, safety, and regulatory needs of the medical device application. Always work with cable manufacturers experienced in and dedicated to the medical market.
Coaxial cable assemblies are critical components in signal transmission systems, used in industries ranging from consumer electronics to aerospace. The voltage rating of a coaxial cable assembly refers to the maximum voltage it can safe...
Coaxial cable assemblies play a crucial role in signal transmission across various industries, from telecommunications and aerospace to medical equipment and consumer electronics. Among the key components determining their performance, ...
In numerous industries ranging from telecommunications and aerospace to renewable energy and outdoor surveillance, coaxial cable assemblies play a pivotal role in transmitting high-frequency signals with minimal loss. However, when thes...
Voltage Standing Wave Ratio (VSWR) isn’t just a technical specification – it’s the heartbeat of signal integrity in critical applications. Nowhere is this truer than in the demanding worlds of medical devices and advanced au...
Medical devices are critical tools where performance, reliability, and patient safety are non-negotiable. As these devices become increasingly sophisticated, smaller, and more portable, the components within them must keep pace. Micro c...
Working with micro coaxial cables (common in electronics, drones, cameras, medical devices, and communications) requires precision tools due to their tiny size and delicate construction. Using the wrong tools can easily damage the cable...
The latest global coaxial cable market research report has been officially released, providing comprehensive insights into the industry’s current landscape and future trajectory. As connectivity demands continue to surge across te...
Micro coaxial cable terminations are the unsung heroes of modern electronics, enabling high-speed data transfer in everything from smartphones to medical devices. Yet, their tiny size makes them highly vulnerable to oxidation, leading ...
Coaxial cable assemblies are critical components in numerous applications, from telecommunications and broadcast systems to aerospace and medical equipment. Signal leakage in these assemblies can lead to significant issues, including de...
Coaxial cable assemblies are critical components in signal transmission systems, spanning applications from telecommunications and aerospace to industrial automation. Signal loss, or attenuation, directly impacts the performance of thes...
Many engineers and technicians grapple with a pivotal question during system design: What is the maximum length of coaxial cable assemblies that preserves signal stability? Unlike a fixed number, this limit hinges on interconnected fact...
In the fast-paced world of telecommunications, where reliable, high-speed signal transmission is the backbone of global connectivity, Coaxial Cable Assemblies stand as a critical component. Unlike standard cables, these assemblies—compr...
In today’s technology-driven landscape, reliable coaxial cable assemblies are indispensable across industries—powering everything from industrial automation and 5G telecommunications to medical imaging devices and aerospace navigation s...
In the world of signal transmission, the Signal-to-Noise Ratio (SNR) of coaxial cable assemblies is a critical metric that directly determines the clarity, reliability, and performance of data or radio frequency (RF) signals. Simply put...
In the intricate ecosystem of medical equipment, where precision and reliability can directly impact patient outcomes, the role of high-performance connectivity solutions cannot be overstated. Our coaxial cables, specifically engineered...
Understanding the Challenge
Micro-coaxial cables (often called “micro-coax”) are essential for high-frequency signal transmission in medical devices, aerospace systems, and 5G infrastructure. However, signal degradation o...
Micro-coaxial cables (micro-coax) – those thin, often less than 3mm diameter cables – are the unsung heroes powering critical video, RF, and data signals in drones, cameras, medical devices, and countless electronics. But their delicate...
In industries ranging from telecommunications and aerospace to medical devices and industrial automation, standard-length coaxial cable assemblies often fail to meet the unique spatial, performance, and integration needs of specific pro...
Cable glands, often referred to as cable connectors or cable fittings, are critical components in electrical and mechanical systems, designed to create a secure, environmental seal where cables enter enclosures, equipment, or junction b...
In today’s world of shrinking electronics and high-speed data transfer, micro coaxial cables play a vital role. But what exactly are they, and how do they work? Whether you’re troubleshooting a device, designing a circuit, or just...
In the realm of modern communication and electronic systems, coaxial cable assemblies stand as a cornerstone technology, playing a pivotal role in transmitting signals with reliability and efficiency. Among the key performance metrics t...
Neural recording technology has revolutionized our understanding of the brain’s complex functions, enabling breakthroughs in neuroscience research, clinical diagnostics, and neuroprosthetics. At the heart of this technology lies a criti...
Introduction: For mission-critical devices in medical implants, aerospace systems, industrial automation, and advanced communications, micro-coaxial cables deliver precious signals. Yet, their minute size makes them terrifyingly vu...
In agricultural monitoring systems, reliable data transmission is key to making informed decisions about crop health, soil conditions, and equipment performance. Among the various transmission options, coaxial cables stand out for their...
1. Impedance in Micro Coaxial CablesImpedance, measured in ohms (Ω), defines the cable’s resistance to alternating current (AC) signals. Proper impedance matching minimizes signal reflections and ensures maximum power transfer.
St...
In the field of coaxial cable applications, whether it is for communication, broadcasting, or other industries, reliable after-sales service is crucial for users. Recently, good news has come: the coaxial cable after-sales service hotli...
In the dynamic landscape of modern communication and industrial systems, the demand for coaxial cable electrical insulation that delivers superior performance, durability, and adaptability has never been greater. As technology...
In the world of broadcasting, nothing frustrates listeners or viewers more than a distorted signal. Interference can ruin the entire experience, whether it’s static on a radio, pixelation on a TV, or dropped audio in a live stream. Achi...
In the complex and demanding landscapes of industrial environments, high – temperature coaxial cables have emerged as an indispensable component. These cables are engineered to withstand extreme heat, ensuring reliable signal tran...
In the highly demanding and technologically advanced fields of aerospace and avionics, every component plays a crucial role in ensuring the safety, reliability, and optimal performance of aircraft and spacecraft. Among these components,...
Imagine trying to pour an entire swimming pool through a garden hose. That’s the challenge of transmitting stunning 8K video – a flood of visual data demanding unprecedented speed and precision. The secret weapon making this possi...
In the ever-evolving landscape of radar technology, every component plays a pivotal role in determining the system’s efficiency, accuracy, and range. Among these components, coaxial cables stand out as a linchpin for seamless oper...
In the intricate network of railway signaling systems, coaxial cables play a pivotal role. They are the unsung heroes that ensure seamless communication, reliable data transfer, and ultimately, the safety and efficiency of train operati...
When working with delicate electronics or high-frequency signal applications, precision is non-negotiable. For 0.81mm micro-coaxial cables—commonly used in medical devices, aerospace systems, and telecommunications—a reliable crimping t...
A leading national television network has recently selected our high-performance coaxial cables for its large-scale broadcast infrastructure upgrade, marking a significant milestone in our commitment to delivering reliable connectivity ...
As the coaxial cable industry undergoes rapid transformation driven by 5G deployment, industrial automation, and smart city initiatives, dealers are facing unprecedented challenges—from navigating technical upgrades like low-loss LDPE m...
In the dynamic world of stadiums and arenas, where thousands gather to cheer for their favorite teams or enjoy live performances, a seamless audio-visual (AV) experience is non-negotiable. From giant video screens displaying instant rep...
In the era of artificial intelligence, AI vision technology has become a core driver of industrial automation, smart cities, and intelligent transportation. From high-precision product inspection on assembly lines to real-time monitorin...
Imagine a future where downloading full HD movies takes seconds, complex brain scans happen in real-time, and next-gen technologies like AI and the metaverse flow without a stutter. The key? Unleashing unprecedented speed and bandwidth ...
Micro Coaxial Cable: High-Quality Solutions for Precision Applications
Micro coaxial cables are essential components in high-performance electronic applications, providing reliable signal transmission in compact and flexible designs. A.
In LVDS (Low Voltage Differential Signaling) display systems, Micro-coaxial Cable (also referred to as Micro Coax Cable) stands out as an optimal solution for high-resolution, high-reliability signal transmission. Designed to meet the str.
Contact Us Micro Coaxial Cable factory-(FRS).
Feel free to reach out to us for any inquiries or orders