Medical-grade micro coaxial cables are specialized components critical to the function of life-saving and diagnostic equipment like endoscopes, catheters, ultrasound probes, imaging systems, and patient monitoring devices. Unlike standard industrial coaxial cables, they must meet stringent specifications to ensure patient safety, device reliability, and consistent performance in demanding medical environments. Here are the key specifications:
Electrical Performance:
Impedance: Strictly controlled impedance, almost universally 50 Ohms. This ensures minimal signal reflection and maximum power transfer for accurate data transmission of high-frequency signals (like video or ultrasound echoes).
Attenuation: Very low signal loss (attenuation) per unit length, especially critical for high-frequency applications (>1 GHz). Measured in dB/meter or dB/100 feet at specific frequencies. Lower attenuation allows longer cable runs or lower transmission power.
Velocity of Propagation (Vp): Consistent signal speed, usually expressed as a percentage of the speed of light (e.g., 70%). Important for timing-critical signals and impedance matching.
Shielding Effectiveness: Excellent shielding (typically multiple layers: braid + foil) is crucial to prevent external electromagnetic interference (EMI) from disrupting sensitive signals and to prevent signals from the cable interfering with other equipment. Critical in EMI-heavy hospital settings. Often specified by dB reduction at specific frequencies.
Mechanical Reliability & Flexibility:
Size: Extremely small outer diameters (OD), often ranging from 0.40 mm (AWG 50) to 1.78 mm (AWG 36) or similar micro sizes. Essential for minimally invasive procedures and integration into compact devices.
Flex Life: Exceptional resistance to fatigue from repeated bending, flexing, twisting, and articulation. Must withstand tens of thousands or even hundreds of thousands of dynamic cycles without performance degradation. Crucial for cables inside articulating endoscopes or catheters.
Conductor: Typically high-quality copper alloy (like silver-coated copper, tin-coated copper, or bare copper) for conductivity and flexibility. Stranded designs are common for dynamic applications.
Dielectric: High-performance insulating material (e.g., specialized fluoropolymers like PTFE, FEP, or ETFE) ensuring low signal loss, stable impedance, and resistance to crushing and abrasion. Material choice heavily impacts flexibility and electrical properties.
Jacket: Biocompatible material that must withstand sterilization and environmental exposure while being flexible and offering protection. Common materials include specialized polyurethanes, silicones, and fluoropolymers.
Biocompatibility & Safety:
Material Safety: All cable materials in direct or potential contact with the patient must meet rigorous biocompatibility standards, primarily ISO 10993 (Biological evaluation of medical devices). This involves cytotoxicity, sensitization, and irritation testing. Materials also meet USP Class VI (highest plastic purity standard) for implantable or fluid-contacting applications.
Low Particulates: Minimal shedding of particles from cable materials is essential, especially in sterile fields or implantable devices.
Compatibility: Must withstand repeated exposure to medical sterilization methods without degrading electrical or mechanical properties: Autoclaving (steam), Ethylene Oxide (EtO), Gamma Radiation, and Chemical Disinfectants (like isopropyl alcohol, bleach solutions – check specific compatibility).
Environmental Stability: Resistance to temperature extremes (both high sterilization temps and low storage/operating temps), humidity, bodily fluids, and cleaning agents.
Regulatory Compliance & Traceability:
Manufacturing Standards: Produced under stringent quality management systems like ISO 13485, specifically designed for medical device manufacturing.
Traceability: Full material traceability (Lot/Batch numbers) is essential for safety recalls and quality control.
End Device Approval: While the cable itself isn’t FDA-approved as a device, it must be manufactured to standards acceptable for integration into FDA-cleared or CE-marked medical devices. The OEM validates the entire assembly.
In Summary:
Medical-grade micro coax isn’t defined by a single “magic number” spec. Instead, it’s a comprehensive set of demanding requirements focusing on:
Consistent, High-Fidelity Signal Transmission: (Impedance, Attenuation, Shielding)
Ultra-Reliability in Motion: (Flex Life, Small Size, Durability)
Withstanding Medical Processes: (Sterilization Compatibility)
Traceable, Controlled Manufacturing: (ISO 13485, Material Traceability)
Choosing the right medical-grade micro coaxial cable means verifying all these specifications align with the specific performance, environmental, safety, and regulatory needs of the medical device application. Always work with cable manufacturers experienced in and dedicated to the medical market.
Coaxial cable assemblies are widely used in signal transmission systems, such as TV antennas, satellite receivers, and communication equipment. A damaged connector can cause signal loss, interference, or even complete transmission failu...
Micro coaxial cable assemblies are widely used in compact electronics, medical devices, industrial sensors, and automotive systems where space constraints and reliability are critical. Their IP (Ingress Protection) rating is essential f...
When lightning strikes nearby or there are sudden power fluctuations, coaxial lines – which are widely used to connect devices like TVs, satellite receivers, and modems – can carry dangerous electrical surges. These surges have the pote...
Choosing the right cable jacket material is crucial for micro-coaxial cables in high-temperature environments. Get it wrong, and you risk signal degradation, premature failure, or costly downtime. Polytetrafluoroethylene (PTFE) and Fluo...
The question of whether coaxial cable assemblies are resistant to water and moisture does not have a simple “yes” or “no” answer. Their resistance largely depends on design, materials, and manufacturing processes...
AbstractCoaxial cables are a cornerstone of modern communication systems, but their design and functionality differ significantly from other cable types such as twisted-pair, fiber-optic, and ribbon cables.
1.IntroductionCables serv...
Micro coaxial cables (micro coax) are the unsung heroes inside countless modern gadgets. From your smartphone and laptop camera to critical medical equipment and automotive systems, these tiny cables carry vital high-frequency signals l...
Signal attenuation – the gradual weakening of a signal as it travels through a cable – is a critical factor in any high-frequency electronic system. When working with micro coaxial cables, their small size makes understanding and calcu...
In the modern world, where seamless communication and reliable signal transmission are the backbones of countless industries, coaxial cables stand as unsung heroes. From television broadcasting to telecommunications, from medical equipm...
In the complex ecosystem of electronics, where signal integrity, interference resistance, and reliable connectivity are non-negotiable, coaxial cable assemblies stand as a foundational component. Unlike standard cables, these assemblies...
Micro coaxial cables are essential for high-frequency signal transmission in compact applications like medical devices, aerospace systems, wearables, and 5G infrastructure. The jacket (outer insulation) is critical for performance...
In today’s hyper-connected world, where 5G networks transmit massive data streams, medical imaging devices capture intricate bodily details, and aerospace systems operate in extreme environments, electromagnetic interference (EMI) poses...
In the fast-paced world of telecommunications, where network stability, bandwidth capacity, and signal integrity directly impact user experience and business operations, leading telecom companies are increasingly selective about their i...
Tangled cables snaking behind your desk, jumbled wires under the entertainment center, or unruly cords cluttering your workshop—these are common nuisances that not only look messy but also pose tripping hazards and make maintenance a ha...
Coaxial cable assemblies are critical for transmitting high-frequency signals in industries like telecommunications, aerospace, and medical equipment. Physical damage—such as sheath cracking, connector breakage, or internal conductor di...
A groundbreaking marketing campaign for high-performance coaxial cables has concluded with remarkable success, significantly boosting market visibility and driving sales for the featured product line. The campaign, launched by leading c...
The choice between flexible and semi-rigid micro-coaxial cables hinges on balancing mechanical robustness, electrical performance, and application-specific requirements.
IntroductionMicro-coaxial cables are critical for high-frequen...
In industrial automation systems—from robotic arms and sensor networks to PLC (Programmable Logic Controller) communications—coaxial cable assemblies serve as the “nerve fibers” for high-fidelity signal transmission. Poorly ...
Introduction
In an era of rapid digital transformation, coaxial cables remain a critical component of global communication infrastructure. As we navigate through 2025, the coaxial cable market is experiencing significant dynamics dri...
In the modern retail landscape, a robust and reliable network is the backbone of seamless operations, enhanced customer experiences, and efficient management. Shopping malls, as bustling hubs of commerce and entertainment, demand networ...
In the era of artificial intelligence, AI vision technology has become a core driver of industrial automation, smart cities, and intelligent transportation. From high-precision product inspection on assembly lines to real-time monitorin...
In the realm of modern connectivity, long-distance cable runs are a fundamental aspect of various industries, from telecommunications and networking to audio-visual setups. However, as signals travel over extended cable lengths, they en...
In today’s tech-driven world, the demand for high-performance micro-coaxial cables is skyrocketing. However, traditional cables often rely on non-recyclable plastics and harmful materials, contributing to environmental pollution. Enter ...
When it comes to data transmission, coaxial cables and fiber optics are two common options, but they have significant differences. Understanding these differences can help you choose the right one for your needs.
Transmission Medium
...
Forget bulky cables and signal dropouts. If you’re navigating the rapidly evolving landscape of factory automation – deploying robotics, vision systems, or complex sensor networks – you’ve likely encountered the critica...
With the continuous advancement of communication technology, the application scenarios of coaxial cables are becoming more and more extensive, and higher requirements are put forward for their installation quality. In response to the ne...
The Hidden Backbone of Smart Farms
Micro-coaxial cables (often thinner than 2mm) are revolutionizing agriculture by reliably transmitting data between sensors, drones, and automated equipment. These miniature cables withstand harsh f...
IntroductionArctic research stations operate in one of Earth’s harshest environments, where temperatures plummet below -50°C. To maintain critical communication and data transmission, these stations rely on cold-resistant micro-coaxial ...
Introduction
The European Union’s latest regulatory changes (effective Q1 2025) are reshaping micro-coaxial cable production standards. These updates affect manufacturers, suppliers, and tech companies relying on these essentia...
Micro-coaxial cables, the unsung heroes carrying critical signals in everything from smartphones and medical devices to aerospace systems and industrial robots, demand impeccable quality. When reliability and performance are non-negotia...
Coaxial cable assemblies are the backbone of countless industries, from telecommunications and aerospace to medical equipment and industrial manufacturing. They transmit high-frequency signals with minimal loss, making them indispensabl...
In the realm of signal transmission, signal loss has long been a persistent headache, affecting the quality and reliability of various communication and data systems. However, our coaxial cable stands out as an effective solution to mit...
Introduction
In high-speed digital communications and RF applications, signal degradation is a critical challenge. Micro-coaxial materials have emerged as a game-changer, minimizing signal loss and preserving data integrity. This art...
In modern electronics, micro coaxial cables are vital for high – frequency signal transmission. However, temperature is a significant environmental factor influencing their performance.
Understanding Micro Coaxial Cables
Mic...
The Industrial Internet of Things (IIoT) has redefined modern manufacturing and industrial operations, with millions of sensors, actuators, and edge devices generating real-time data to drive efficiency and intelligence. Yet this interc...
In the realm of connectivity solutions, few components are as critical as coaxial cables. They serve as the backbone for transmitting high-frequency signals with minimal loss, making them indispensable in industries ranging from telecom...
Selecting the right dielectric material for micro coaxial cables is critical for high-frequency performance, reliability, and cost-effectiveness. Polytetrafluoroethylene (PTFE) and Polyethylene (PE) are the two dominant contenders. Unde...
In the realm of radio communications, high-frequency coaxial cables play a pivotal role in ensuring efficient and reliable signal transmission. As technology continues to advance, the demand for high-quality coaxial cables capable of ha...
In LVDS (Low Voltage Differential Signaling) display systems, Micro-coaxial Cable (also referred to as Micro Coax Cable) stands out as an optimal solution for high-resolution, high-reliability signal transmission. Designed to meet the str.
Meta Description: Discover our premium Flexible Micro-Coaxial Assemblies—engineered for high-frequency signal integrity, durability, and versatility in aerospace, medical, telecom, and robotics applications.
What Are Flexible .
Contact Us Micro Coaxial Cable factory-(FRS).
Feel free to reach out to us for any inquiries or orders